Education, tips and tricks to help you conduct better fMRI experiments.
Sure, you can try to fix it during data processing, but you're usually better off fixing the acquisition!

Saturday, April 9, 2011

Shim and gradient heating effects in fMRI experiments

Another week, another tangent. At least this one is directly related to the artifacts that I promise to get back to soon!

In this post I will review the nature and typical magnitudes of heating effects in a scanner being used for fMRI. Ever wondered why you sometimes observe discontinuities, or 'steps,' in a time series comprising the concatenation of multiple blocks of EPI data? What causes these discontinuities? Are they a problem for fMRI? And are there ways to reduce or eliminate these discontinuities at the acquisition stage? To begin with, some background.

Electrical energy in, thermal and vibrational energy out

When you run the gradients to generate images, a lot of heat is produced through vibrations (friction) of the gradient coils - the Lorentz forces that result from putting electrical current through copper wires immersed in a magnetic field - as well as through direct (resistive) electrical mechanisms. Much of that heat is removed via water cooling inside the gradient set. Water typically enters at about 20 C and may exit the scanner as high as 30 C. Modern gradient designs are pretty efficient at removing heat from the gradient coil. (I've done throwaway tests on my Siemens Trio that suggest the steady state temperature of the return cooling water is achieved after about 15 minutes of continuous scanner operation.) But - and this is the crux of this post - the heat imparted to the scanner isn't removed at precisely the same rate that it is being produced. In other words, the scanner is unlikely to be in a truly steady thermal state while you're using it.