Education, tips and tricks to help you conduct better fMRI experiments.
Sure, you can try to fix it during data processing, but you're usually better off fixing the acquisition!
Sure, you can try to fix it during data processing, but you're usually better off fixing the acquisition!
Tuesday, January 28, 2014
Partial Fourier versus GRAPPA for increasing EPI slice coverage
This is the final post in a short series concerning partial Fourier EPI for fMRI. The previous post showed how partial Fourier phase encoding can accelerate the slice acquisition rate for EPI. It is possible, in principle, to omit as much as half the phase encode data, but for practical reasons the omission is generally limited to around 25% before image artifacts - mainly enhanced regional dropout - make the speed gain too costly for fMRI use. Omitting 25% of the phase encode sampling allows a slice rate acceleration of up to about 20%, depending on whether the early or the late echoes are omitted and whether other timing parameters, most notably the TE, are changed in concert.
But what other options do you have for gaining approximately 20% more slices in a fixed TR? A common tactic for reducing the amount of phase-encoded data is to use an in-plane parallel imaging method such as SENSE or GRAPPA. Now, I've written previously about the motion sensitivity of parallel imaging methods for EPI, in particular the motion sensitivity of GRAPPA-EPI, which is the preferred parallel imaging method on a Siemens scanner. (See posts here, here and here.) In short, the requirement to obtain a basis set of spatial information - that is, a map of the receive coil sensitivities for SENSE and a set of so-called auto-calibration scan (ACS) data for GRAPPA - means that any motion that occurs between the basis set and the current volume of (accelerated) EPI data is likely to cause some degree of mismatch that will result in artifacts. Precisely how and where the artifacts will appear, their intensity, etc. will depend on the type of motion that occurs, whether the subject's head returns to the initial location, and so on. Still, it behooves us to check whether parallel imaging might be a better option for accelerating slice coverage than partial Fourier.
Deciding what to compare
Disclaimer: As always with these throwaway comparisons, use what you see here as a starting point for thinking about your options and perhaps determining your own set of pilot experiments. It is not the final word on either partial Fourier or GRAPPA! It is just one worked example.
Okay, so what should we look at? In selecting 6/8ths partial Fourier it appears that we can get about 15-20% more slices for a fixed TR. It turns out that this gain is comparable to using GRAPPA with R=2 acceleration with the same TE. To keep things manageable - a five-way comparison is a sod to illustrate - I am going to drop the low-resolution 64x48 full Fourier EPI that featured in the last post in favor of the R=2 GRAPPA-EPI that we're now interested in. For the sake of this comparison I'm assuming that we have decided to go with either pF-EPI or GRAPPA, but you should note that the 64x48 full Fourier EPI remains an option for you in practice. (Download all the data here to perform for your own comparisons!)
I will retain the original 64x64 full Fourier EPI as our "gold standard" for image quality as well as the two pF-EPI variants, yielding a new four-way comparison: 64x64 full Fourier EPI, 6/8pF(early), 6/8pF(late), and GRAPPA with R=2. Partial Fourier nomenclature is as used previously. All parameters except the specific phase encode sampling schemes were held constant. Data was collected on a Siemens TIM/Trio with 12-channel head coil, TR = 2000 ms, TE = 22 ms, FOV = 224 mm x 224 mm, slice thickness = 3 mm, inter-slice gap = 0.3 mm, echo spacing = 0.5 ms, bandwidth = 2232 Hz/pixel, flip angle = 70 deg. Each EPI was reconstructed as a 64x64 matrix however much actual k-space was acquired. Partial Fourier schemes used zero filling prior to 2D FT. GRAPPA reconstruction was performed on the scanner with the default vendor reconstruction program. (Siemens users, see Note 1.)
Subscribe to:
Posts (Atom)