Education, tips and tricks to help you conduct better fMRI experiments.
Sure, you can try to fix it during data processing, but you're usually better off fixing the acquisition!

Thursday, June 14, 2018

FMRI data modulators 3: Low frequency oscillations - part II


In the previous post, I laid out four broad categories of low frequency oscillation (LFO) that arise in fMRI data. The first three categories are mentioned quite often in fMRI literature, with aliasing of respiratory and cardiac pulsations being the best known of all “physiological noise” components. In this post, I am going to dig into the fourth category: blood-borne agents. Specifically, I want to review the evidence and investigate the possibility that non-stationary arterial CO₂ might be producing an LFO that is at least as important as aliased mechanical effects. At first blush, this is unsurprising. We all claim to know CO₂ is a potent vasodilator, so we can think of CO₂ in blood as a sort of changing contrast agent that perturbs the arterial diameter – producing changes in cerebral blood volume - whenever the arterial CO₂ concentration departs from steady state.

Why would arterial CO₂ fluctuate? Why isn't it constant? Simply put, we don't breathe perfectly uniformly. If you monitor your own breathing you’ll notice all sorts of pauses and changes of pace. Much of it depends on what you’re doing or thinking about, which of course gets right to the heart of the potential for fluctuations in CO to be a confound for fMRI.

I had hoped to begin this post with a review of CO transport in the blood, and from there to relay what I’ve found on the biochemical mechanism(s) underlying vasodilation caused by CO. But after several weeks of searching and background reading, I still don’t have sufficient understanding of the biochemistry to give you a concise overview. The CO transport mechanisms are quite well understood, it seems. But how a change in one or more components of CO in arterial blood produces changes in the arterial smooth muscle wall, that is a more complicated story. For the purposes of this post, then, we shall have to content ourselves with the idea that CO is, indeed, a potent vasodilator. The detailed biochemistry will have to wait for a later post. For those of you who simply can’t wait, I suggest you read the review articles given in Note 1. They aren’t aimed at an fMRI audience, so unless you are a biochemist or physiologist, you may not get the sort of intuitive understanding that I have been searching for.


First indications that arterial CO might be an important source of LFO in fMRI data

The effects of respiration on BOLD data were recognized in the mid-nineties as an important consideration for fMRI experiments. By the late nineties, several groups began to investigate the effects of intentionally held breaths on BOLD signal dynamics, using as their basis the phenomenon of arterial CO as a vasodilator. Other groups (e.g. Mitra et al., 1997) observed low frequency fluctuations in BOLD data that suggested a vasomotor origin, or found fluctuations in cerebral blood flow (CBF) measured by non-MR means (e.g. Obrig et al., 2000). It wasn’t until 2004, however, that Wise et al. showed definitively how slow variations of arterial CO concentration were related to, and likely driving, low frequency variations in BOLD time series data:
PETCO-related BOLD signal fluctuations showed regional differences across the grey matter, suggesting variability of the responsiveness to carbon dioxide at rest.”
“Significant PETCO-correlated fluctuations in [middle cerebral artery] MCA blood velocity were observed with a lag of 6.3 +/- 1.2 s (mean +/- standard error) with respect to PETCO changes.”

The spatial-temporal dynamics observed by Wise et al. certainly fit a blood-borne agent. That is, we should expect lag variations dependent on the total arterial distance between the heart and the tissue of interest; in their case, the MCA.