Education, tips and tricks to help you conduct better fMRI experiments.
Sure, you can try to fix it during data processing, but you're usually better off fixing the acquisition!

Thursday, October 13, 2016

Motion traces for the respiratory oscillations in EPI and SMS-EPI


This is a follow-up post to Respiratory oscillations in EPI and SMS-EPI. Thanks to Jo Etzel at WashU, you may view here the apparent head motion reported by the realignment algorithm in SPM12 for the experiments described in the previous post. Each time series is 200 volumes long, TR=1000 ms per volume. The realignment algorithm uses the first volume in each series as the template. The motion is plotted in the laboratory frame, where Z is the magnet bore axis (head-to-foot for a supine subject), X is left-right and Y is anterior-posterior for a supine subject.

In the last post I said that there were five total episodes of a deep breath followed by sigh-like exhale, but actually the subject produced a breath-exhale on average every 30 seconds throughout the runs. (This was a self-paced exercise.) Thus, what you see below (and in the prior post) has a rather large degree of behavioral variability. Still, the main points I made previously are confirmed in the motion traces. I'll begin with the axial scan comparison. Here are the motion parameters for the MB=6 axial acquisition with standard foam head restraint (left) versus the custom printed restraint (right):

MB=6, axial slices. Left: foam restraint. Right: custom 3D printed headcase restraint

The effect of the custom restraint is quite clear. The deep breath-then-sigh episodes are especially apparent when using only foam restraint. Note the rather similar appearance of the high frequency oscillations, particularly apparent in the blue (Y axis) traces between the two restraint systems, suggesting that the origin of these fluctuations is B0 modulation from chest motion rather than direct mechanical motion of the head. We cannot yet be sure of this explanation, however, and I am keeping an open mind just in case there are small movements that the custom head restraint doesn't fix.

Friday, October 7, 2016

Respiratory oscillations in EPI and SMS-EPI


tl;dr   When using SMS there is a tendency to acquire smaller voxels as well as use shorter TR. There are three mechanisms contributing to the visibility of respiratory motion with SMS-EPI compared to conventional EPI. Firstly, smaller voxels exhibit higher apparent motion sensitivity than larger voxels. What was intra-voxel motion becomes inter-voxel motion, and you see/detect it. Secondly, higher in-plane resolution means greater distortion via the extended EPI readout echo train, and therefore greater sensitivity to changes in B0. Finally, shorter TR tends to enhance the fine structure in motion parameters, often revealing oscillations that were smoothed at longer TR. Hence, it's not the SMS method itself but the voxel dimensions, in-plane EPI parameters and TR that are driving the apparent sensitivity to respiration. Similar respiration sensitivity is obtained with conventional single-shot EPI as for SMS-EPI when spatial and temporal parameters are matched.

__________________

The effects of chest motion on the main magnetic field, B0, are well-known. Even so, I was somewhat surprised when I began receiving reports of likely respiratory oscillations in simultaneous multi-slice (SMS) EPI data acquired across a number of projects, centers and scanner manufacturers. (See Note 1.) Was it simply a case of a new method getting extra attention, revealing an issue that had been present but largely overlooked in regular EPI scans? Or was the SMS scheme exhibiting a new, or exacerbated, problem?

Upper section of Fig. 4 from Power, http://dx.doi.org/10.1016/j.neuroimage.2016.08.009, showing the relationship between apparent head motion (red trace) reported from a realignment algorithm and chest motion (blue trace) recorded by a respiratory belt. See the paper for an explanation of the bottom B&W panel.