Education, tips and tricks to help you conduct better fMRI experiments.
Sure, you can try to fix it during data processing, but you're usually better off fixing the acquisition!

Thursday, May 23, 2024

Core curriculum - Cell biology: the neuron's action potential

 

The last post reviewed the origins and properties of the resting membrane potential. Specifically, we are most interested in the membrane potential of neurons because they have an activated state that leads to signaling between neurons. Signaling from one neuron is achieved via an action potential from the cell body (soma) down its axon to synapses with other neurons. There are several good summary videos available online. Try them all to reinforce your knowledge.






Finally, in this post we get our first real look at synapses and excitatory and inhibitory neurotransmitters as part of a graded potential:


Now that you've seen the electrochemical action potential, in the next couple of posts we can dig more into neuron-neuron signaling, including synapses and the role of chemical neurotransmitters.

_________________


BONUS: a speedy review. All familiar stuff now, right?



Sunday, May 19, 2024

Core curriculum - Cell biology: cell membranes and the resting potential

 

A lot of the important functions of neurons (and glia) happen at their cell membranes. In the case of neurons, in addition to the membrane around the cell body (the soma), we also need to understand what happens along the neuronal processes (aka neurites): the dendrites (inputs) and the neuron's axon (the output). 

Let's begin this section by reviewing the structure of the cell membrane.

 


 

Transport across the cell membrane was introduce above. There are different mechanisms of membrane transport, each establishing certain behaviors of a cell.



The sodium-potassium pump is one of the most important membrane transport mechanisms for neural signaling. Let's take a closer look.

 



The cell's resting membrane potential was mentioned in the last two videos. The resting potential is an important starting point for understanding neuronal signaling via action potentials. For the last part of this post, we will look in more detail at the origins of the electrical potentials and electrostatic gradients across a cell membrane at rest.






In the next post we can start to look at cell signaling. Specifically, we are most interested in a neuron's action potential, which is the main way neurons communicate with each other.

_________________