Education, tips and tricks to help you conduct better fMRI experiments.
Sure, you can try to fix it during data processing, but you're usually better off fixing the acquisition!

Wednesday, April 12, 2017

"Power plots" of respiratory effects in EPI


This will be brief, a simple demonstration of the sort of features visible in a "Power plot" of an EPI time series. The goal is to emphasize that chest motion produces apparent head motion effects in typical analyses. Here the subject's head was held very firmly in the 32ch coil of my Siemens Trio using a custom printed head case. See the posts from October last year for more details. In this test the subject inhaled to near maximum and exhaled immediately, repeating the procedure every 30 seconds or so in a self-paced manner. The subject breathed normally otherwise. Critically, note that no breaths were held.


What we see are two striking features. First, there is banding with a period of approx 30 seconds, and the bright bands correspond with apparent head movement reported as framewise displacement (FD) in the top red trace. (TR is 1700 ms.) Some of this may be real head movement, but a lot arises from chest displacements modulating the magnetic field. This is the feature I want to emphasize. We need to be aware that not all sources of frame-to-frame variation reported by a volume registration (aka motion correction) algorithm are necessarily actual head motion. Last October I showed in a series of simple demonstrations how chest motion produces shearing and translations of EPI signals in a manner consistent with perturbation of magnetic field, rather than head motion per se. It's important for you to distinguish these two phenomena because the volume registration algorithm cannot differentiate them. It does its best to match volumes no matter the source of differences.

The second feature in the plots above I'm not going to get deep into here. It's for another day. But it's pretty hard to miss the dark bands that follow tens of seconds after each bright band. Notice that the dark bands don't tend to coincide with increased FD. That is, the origin of the dark bands isn't actual or apparent head motion but something else. They come from changes in BOLD signal as the arterial CO2 changes. This is the part of the "physiologic noise" that people try to model with things like RETROICOR and RVT, or from end-tidal CO2 measurements. Here, the perturbation in BOLD signal is driven by the strange breathing task, but it's not motion or motion-like. It's real physiology in the brain.

That's all for now! More posts on this stuff in the coming weeks.



No comments:

Post a Comment